A New Approach to Diagnose Parkinson’s Disease Using a Structural Cooccurrence Matrix for a Similarity Analysis – Publicado no periódico Computational Intelligence and Neuroscience

A New Approach to Diagnose Parkinson’s Disease Using a Structural Cooccurrence Matrix for a Similarity Analysis – Publicado no periódico Computational Intelligence and Neuroscience

Parabéns aos colaboradores do LAPISCO pelo artigo “A New Approach to Diagnose Parkinson’s Disease Using a Structural Cooccurrence Matrix for a Similarity Analysis” publicado no periódico   Computational Intelligence and Neuroscience

Link/DOI do artigo: https://doi.org/10.1155/2018/7613282

Abstract: Parkinson’s disease affects millions of people around the world and consequently various approaches have emerged to help diagnose this disease, among which we can highlight handwriting exams. Extracting features from handwriting exams is an important contribution of the computational field for the diagnosis of this disease. In this paper, we propose an approach that measures the similarity between the exam template and the handwritten trace of the patient following the exam template. This similarity was measured using the Structural Cooccurrence Matrix to calculate how close the handwritten trace of the patient is to the exam template. The proposed approach was evaluated using various exam templates and the handwritten traces of the patient. Each of these variations was used together with the Naïve Bayes, OPF, and SVM classifiers. In conclusion the proposed approach was proven to be better than the existing methods found in the literature and is therefore a promising tool for the diagnosis of Parkinson’s disease.

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *